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Electronic excitations in nanoscale systems with he€ical 
symmetry 
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Naval Research Laboratory, Washingto& DC 20375. USA 

Received 30 November 1993. in final form 7 March 1994 

Abstracl. A complete set of heliwlly symmetric wave functions is consmcted and is used to 
set up the Bloch-like states for describing the electronic band structure of nanode systems 
with helical symmetry. Various helical arrangements leading to different graphitic tubules 
may be obtained by rolling the two-dimensional honeycomb lattice into a cylinder subjected 
to appropriate periodic boundaty mnditions. A discussion of the symmetries of these helices 
is given. This method is applied to study the electronic structure of graphitic tubules and is 
compared with other methods found in the IiteraNre. 

The discovery of fullerene tubules [1,2] has opened up new possibilities of light-weight, 
high-strength materials with interesting mechanical and electrical properties. In order to gain 
insight into the properties of such tubules, two theoretical models have been proposed in the 
literature. In one, the electrons of the system are thought to be mutually interacting while 
moving on the surface of a cylinder much like the free electron model of the interacting 
electrons in a solid. In the other model, the electrons belong to a graphite sheet of carbon 
atoms rolled into a cylindrical tube of constant radius. These models have served different 
purposes. The first approach admits of theoretical analysis of the many-electron interactions, 
and interesting mesh-Fie energy smctures for their plasma modes and Kohn anomalies are 
obtained 13-51. In 141 magnetoplasma oscillations were also studied. The second approach 
has been used to determine the physical properties reflecting the various possible geometric 
structu~s associated with the atomic disposition in helical motifs of varied types [MI. 
White er at [8] have given an extensive summary of the work on fullerenes including 
the tubule structures. They found the helical -and rotational symmetries of the honeycomb 
lattice of carbon atoms wrapped on a cylinder necessarily lead to a variety of helical motifs 
important in determining the metallic (serpentine) and semiconducting (saw-tooth) properties 
of these tubules; these are missed in the electron gas model. 

The purpose of this paper is to offer an alternative model of interacting electrons on 
a cylinder but now starling from the helix. It is described in terms of helical-symmetry- 
adopted states characterized by ttvo parameters of the helix, the pitch and the pitch angle. 
We first construct a complete set of wave functions that have the correct helical symmetry 
of the empty lattices associated with different helical arrangements of the atoms. We have 
incorporated this into a two-dimensional electron gas model [9] to exhibit the modifications 
due to lower helical symmetry on the plasma properties of the higher-cylindrical-symmetry 
eleclmn gas model quoted above. We have also investigated the effects of a constant 
magnetic fields along the tube axis. In the present work, we proceed to consmct Bloch 
functions associated with the gaphitic tubules and study the singleparticle band structure 
properties of such systems. We relate the results obtained to those found by other authors 
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using different techniques (using tight-binding methods [a, 10,l I]; using the k * p  method 
[12]; [12] also contains an examination of the magnetic field effects; and using the ab initio 
molecular dynamics technique [ 131). 

Just as the classification of plane wave states of the interacting electron gas in the 
empty lattice gives powerful insight into the electronic structure of the solid state system, 
the complete set of helical wave states can lead to useful insight into the electronic states 
of the helical arrangements of atoms on a cylinder by means of a suitable mathematical 
transformation of the complete set of cylindrical wave functions. Since the helical system 
has a lower symmetry than a cylindrical system, the mathematical transformation introduced 
here is non-trivial. It is applicable both to systems with additional rotational symmetry 
such as graphitic tubules and also to systems without any rotation symmetry such as helical 
polymer chains (see, for example, [ 141). The former systems have their pitch commensurate 
with the periodicity along the tubule axis, whereas the latter do not. 

We first observe that helical wave states are parametrized by the pitch angle, p, and 
the pitch p ,  of the spiral. These parameters are related to the arrangement of the periodic 
graphitic motif on the tubule by simple relations, which are derived in this paper. We may 
also point out that the helical-symmetry-adopted approach advocated here for elucidating 
the electronic structure of the helical motifs of atoms arranged on a cylinder is much like the 
plane wave basis states in describing the electronic structure of crystalline solids. Instead 
of the usual tight-binding method with plane waves, we suggest employing helical waves. 
Many-electron theory based on helical waves 191 in place of the cylindrical waves reflects 
the salient features of the helical structures even if we do not include the actual atomic 
structure, much as the empty lattice construction exhibits the crystal symmetry properties 
of the solid. With these considerations in view, we present here a theory of the electronic 
states of helical tubules based on helical waves, 

P J Lin-Chung and A K Rajagopal 

X ' at 

Figure 1. (a) The geometry of an isolated helix with pitch p and radius 0 .  (b) The rectangle 
ABCD and the parallelogram ABC'D' are W e d  by unrolling the cylindrical surface after 
a cut is made along line AD and along the spiral path. respctively. The cylindrical surface 
coordinate system [r'. ne]. and the new helical coordinate syxtem (S. af) are shown. p and p 
are the pitch and pitch angle of the spiral. respectively. 

We first consider one pitch of a single uniform helix. The geometry of the helix with 
pitch p ,  wound on a right circular cylinder of radius a, shown in figure 1, is characterized 
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by any arbitrary translation, h, along the axis of the cylinder accompanied by a concomitant 
rotation, q(h) = k h j p ,  about the axis. The pitch angle, p .  of the helix is defined as 
tanp = p/2xa, with 0 c: @ < n/2. 

As described in figure 1, unwrapping the cylinder in two ways, one along the vertical 
line AD on the cylinder, leading to a rectangle ABCD in figure I@). and one along the 
helical path, leading to the parallelogram ABC‘D’, clearly exhibits basic features of the helix. 
Note that in figure ](a), z and z’ represent the axis of the cylinder and an axis parallel to 
it on the surface of the cylinder, respectively. The lines AD and BC are [z’. 6 = 01 and 
[z’ ,  6 = 2 ~ 1 ,  respectively. 

When the cylinder is cut along AD and spread into a plane as in figure l(b), the helix 
A(B)D(C) in figure l(a) becomes the diagonal AC of the rectangle whose base AB is the 
circumference of the base circle of the cylinder. The cylindrical coordinate system becomes 
the two-dimensional [z’, a@] rectangular coordinate system of figure l(b). In the study of 
the electronic structures of graphite tubules using a tight-binding method, many authors 
have chosen such a coordinate system [lo, 111. 

When the cylinder in figure I(a) is cut along the helix and spread into a plane, the 
parallelogram ABC‘D‘ is formed. AD’ and BC’ are in fact the identical cut edges associated 
with the helix and will coincide when ABCD‘ is rolled back about the z-axis to reform the 
cylinder of figure I(a). A rotation through 2n brings points B, D’ back to points A, D and 
brings C’ to C, and the line BC’ coincides with AC, forming the helix. In the planar surface 
picture, we choose to employ a new rectangular helical coordinate system, (s, at), as shown 
in figure l(b). The s-axis is along the helical line AC, and the at-axis is perpendicular to 
the s-axis. The (s, at)  are related to the [z’, a81 by the following equations: 

s = z’sinp + a6 cosp at = -z’cosp + aosinp. (1) 

The ranges s : (-ca. CO), t : (0,2n sinp) correspond to z’ : (-CO, ca), 0 : (0, 2n). 
We observe that the basic properties of the helix can be visualized from the parallelogram 

ABC‘D‘ using the (s, a t )  coordinate system. This has the advantage over the [z’, a81 
system when more complicated helical motifs are considered. A cylinder with several non- 
equivalent helices of the same pitch and pitch angle is obtained by starting each helix from 
a point on the base circle and running up the helical path in the same way as the single 
helix was described above. The seed points on the base circle may or may not possess 
a rotational symmetry among them. These helices then appear as parallel lines inside the 
iectangle and the parallelogram in figure l(b) and these lines need not be equally spaced if 
there is no rotational symmetry to start with. 

The consequences of these properties are now explored in detail. 

(i) Each Line represented by f = to in the (s, at)  system maps back to the surface of the 
cylinder as a helix passing through the point [z’ = 0, a6 = ato/ sin p].  Thus the line AC (t 
= 0) corresponds to the helix passing through 10, 01. This follows from equation (I). The 
generator of the translation along the helix may then be represented by the operator P, in 
the (s, at)  system of by P + (2n /p )L  in the [z’, a81 system, P being the generator of the 
translations parallel to z .  and L the generator of a rotation around the z-axis, 

(ii) Because the segment BC‘ rolls back to the AC, a fundamental requirement on the 
wave function describing the helical system is 

Jr(s+2nacosp,  a t = k a s i n p ) E $ ( s ,  at=O) foralls. (3) 
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(iii) By definition, the pitch p of the helix is a transIation along z accompanied by a 
2a rotation in the 8-direction. This implies that z + z + p, and 8 + 6 + 2rr, which in the 
helical system corresponds to a simple translation s -+ s + sp along the s-direction with t 
unchanged. Here sp is the length along the helix associatcd with one pitch, s, = p/sinp. 
The wave function under such a transformation can then change at most by a phase factor, 
exp(i4): 

@(s + s,, t )  = exp(i4)$(s, t )  for all s, t .  (4) 

It is thus natural to label the wave functions of the electrons in this system by the 
eigenvalues, M ,  of the operator Ps, the momentum operator along the helix. Equation (4) 
then leads to the result that M is a continuous eigenvalue. In addition we choose a second 
operator, 4 = (a-' sin ,6) L -cos ,6P, which commutes with Ps, and whose eigenvalues 
M' will provide us with a second quantum number to label the wave function of the electrons 
in the helical space. Thus we obtain a complete orthonormal set of helical-symmetry-adopted 
wave functions 

JIMM+. t )  = [ ~ ( p  - a)/2a=] expi(iWs + ~ ' t ) .  (5) 

The &function in p represents the electrons as being localized to stay on the surface of the 
cylinder of radius a. A relation between M and M' exists following from the condition (3): 

M'=(m-aMcosD)/s inp m = O , i l ,  f2, .... (6) 

The phase 4 in equation (4) is Ms,. Equation (5) may thus be rewritten in an equivalent 
form using ( M ,  m) quantum numbers. To appreciate the significance of this representation 
we here state the complete set of orthonormal cylindrical wave functions is the eigenstates 
k, 1 respectively of the translation operator P and the rotation operator L, which commutes 
with it. Here k is continuous, and 1 is discrete, taking values 0, f l . 2 ~ 2 , .  , .. Explicitly these 
wave functions are 

@dz,O) = [6@-a)/2irJ;iIexpi(kz+le). (7) 

The right-hand side of equation (2) may also be identified as the effective generator of 
translation parallel to the z-axis of the helix, Pen (sin ,!?)-IPS. The eigenvalues of Pen 
are then K = k + 2al/p.  When the pitch p = 63, i.e., p = n/2 the helical states in 
equation (5 )  go over to the cylindrical states given by equation (7) and I = m. 

The free one-electron energies associated with the cylindrical and helical symmetries 
are shown in figure 2 for fixed p, p .  they are the familiar free electron parabolic 
energy bands associated with the cylindrical and helical symmetries. By invoking the 
periodicity along the helix, we obtain a one-dimensional Brillouin zone (62) feature in 
the M-direction, and the bands then will be folded back into the first BZ. These are 
the 'empty helix' bands, which become altered further when the actual atomic potential 
effects are included in the computation of the energy bands leading to the interesting 
features of the helical systems mentioned in the introductory paragraph. From figure 2 
we see that the helical symmetry changes the nature of the free electron states given by 
E Y ~  = (Z@)-'[(M - m cosp/a)2(sin ,6)-' + m2/aZ] from that of cylindrical symmetry in 
several ways. For example, there is no degeneracy between the +m and -m states when 
m # 0, and two minima in EM, occur at rtm cos p/a.  In the presence of a constant 
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Figure 2. The free eleclmn energy dispersion relations for m = 0, ;tl for representative pitch 
m3k 8. 

magnetic field along the axis of the cylinder, this difference becomes even more significant 
as shown in [9]. 

We now show how to incorporate a periodic arrangement of atoms located on the surface 
of a cylinder in a helical motif in a description of its one-electron states using our helical 
waves. There may be only a single helical arrangement as in the case of some polymer 
chains [14], and as in figure I(b), ABC'D' has no atoms in the interior of the parallelogram. 
Or, there may be several helices running along the surface of the cylinder, in which case the 
parallelogram ABC'D' will contain inequivalent lines parallel to AC' depicting the atomic 
arrangements on them. These atomic arrangements may or may not be periodic along the 
z-axis of the cylinder. In general, a periodicity s, = g's, is possible where g' need not be 
an integer, and s, is the repeat distance of the atomic pattern along the s-direction. We then 
define a unit rectangular cell in (s, a?)  space with dimensions s, and 2na sin b. 

The helical Bloch functions with quantum numbers M and M' signifying the eigenvalues 
of Ps and Pt for a general multi-helix periodic system are given by 

Here q,,(s-sj(.), t-t,) is the Ath atomic orbital associated with atoms situated at (SI(,,),  at,) 
in the unit cell, and C A , " , ~ ( ~ ,  are the coefficients of the expansion. Tbe sum over j ( n )  is 
over the J. atoms along the nth helix of length so, and the sum over n is over the different 
helices in the unit cell. It is often possible to have further rotational symmetry among the 
atoms in different spirals in the unit cell, as in the graphitic tubules. The wave functions 
in equation (8) have the required symmetries of the tubule and should satisfy the periodic 
conditions, equation (3) and 

qM,t.p(s +s,. t )  = qMM,(s.  t)expiMs,. (9) 
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Equation (3) leads to the same relation between M and M‘ as given in equation (6), while 
equation (9) defines the one-dimensional BZ in M :  (-r/sC, 7r/sc). This completes our 
description of helical Bloch band theory. 

This theory is applicable for general helical systems that do not form two-dimensional 
Bravais lattice systems when unrolled into a flat [z’, a@] plane. We will now relate the 
parameters used here for the helical system to those generated by rolling a periodic graphitic 
motif into a cylinder described in the current literature (see the review in [SI). This provides 
us with a comparison of our approach with those in the literature. We shall henceforth focus 
attention on the graphitic tubules. 

Following [7,8] let RI and RZ be two primitive lattice vectors of a sheet of the 
honeycomb lattice. A general tubule labelled by a pair of integers (nt, nz] is obtained 
from a lattice vector R = nl RI + nzRz by rolling the sheet with R as the base around the 
z-axis perpendicular to R into a cylinder of radius Q = IR1/2n. The period along the z- 
direction on this cylinder is obtained by finding the smallest lattice vector S = SISI + szSz 
(sl and s2 are integers) such that the vector c = (S - R) is perpendicular to R. This leads 
to the condition 
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(SI - n1)(2n1 + nz) + (sz - nz)(2n2 + nl) = 0. 

c =  (1s1 - n t l / l ~ ~ ~ + n l l ) ( n :  +n:+nlnz)l’J%I. (11) 

(10) 

The magnitude of the vector c gives us the lattice period along the tubule axis: 

The spiral motif on the cylinder, on the other hand, is obtained by finding a vector 
H = hlRl + hzR2 that is a lattice vector along the spiral direction. It is convenient to 
choose H as the smallest lattice vector along the direction connecting one atom with its 
nearest neighbour. In our formulation the pitch angle, p, is thus given in terms of H by 

tanp = IH x RI/(€€. R) with 0 < p 6 z j 2  (12) 

and the pitch p is given by 

p = [RI tan p.  (13) 

We then observe that c / p  = g is in general rational, but when it is an integer it gives the 
number of turns of the spiral in the periodic unit cell on the cylinder. Also the area of the 
unit cell is an integral multiple of the area A = /RI x Rzl of the unit cell of the underlying 
two-dimensional sheet, so that we have the relation 

IS x R I  = [(21sl - n l l ) / ( 2 n z + n l ) l ( n : + n : + n 1 n ? ) ~ .  ( 14) 

Thus S is determined by the period along the z-direction, and H is determined by the 
helical path chosen to describe the helical symmetry. 

All tubules constructed in this way therefore possess helical structures. There are 
two special types of tubule of interest, namely the serpentine, [ n ,  n } .  and the sawtooth, 
[n, 01, both of which have reflection planes and are thus achral, whereas all others are 
chiral. Figure 3 exhibits special cases of these two types and figure 4 represents another 
tubule [6, 3), which is an example of a chiral tubule. In the serpentine case, we choose 
H = -RI + 2R2, and in all other cases we choose H = RI + Rz. We thus have the 
following. 
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(i) Serpentine [n.  n): 

B{n,n)=rr/3 c { n , n ) =  Is1 -nllR~I pln.n}=3nlR11 (15) 

so that g{n, n )  = 1st - n1/3n. From equation (1) the smallest S for this case has (SI - n( 
= 1. and thus g ( n ,  n) = 1/3n. As shown in figure 3(a), for (1, I}, SI = 2, s,. = 0, and g is 
shown to be f .  

p{n, 0 )  = n / 6  c{n, 0) = &IRIllq -nl p { n ,  0) =nlRII/& (16) 

so that g(n, 01 = 31~1 - n l / n .  The case (3, 0) with sI = sz = 2, as shown in figure 3(b), 
satisfies the conditions in equation (16), and thus g = 1. 

(ii) Sawtooth (n, 0): 

(iii) 16, 3) tubule 

PIS .  3) = t . . - ' ( f i /9)  c16, 3) = ( f i l s t  -61/4)IRlI p[6,  3 )  = f i lR11. (17)  

Since from equation (IO) SI = 2, sz = 8, we have g(6, 3) = 3 from equation (17). This 
tubule is displayed in figure 4. 

Figure 3. nvo-dimensional graphite sheets with six atoms al the comers of each hexagon. The 
graphitic tubules are constructed by rolling the rectangular strips with base R around the lubule 
axis L for (a) the (1.1) serpentine lububule and (b) the (3.0) sawloolh tubule. W is in the direction 
of the spirals. Dotted lines and the h e  along the H direaion form a continuous spiral in each 
tubule. The rectangles in heavy lines are the periodic cells in [z', a01 space and in (S. at) space. 

The energy bands for the serpentine and the sawtooth types of tubule have been obtained 
in [IO] and [ I l l  by folding the two-dimensional bands associated with the graphite sheet 
along the k, and k, directions respectively. For a general graphitic tubule (n I ,  nz # n l  # 0). 
White etnl (6,7] obtain the band structure by effectively transforming the two-dimensional 
graphite bands in the (s, at )  space of the tubule in terms of the [z', a@] representation 
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Figure 4. The construction of a {6,3) graphitic lubule f" the two-dimensional graphite sheet. 
Dotted lines form a continuous spiral &er rolling the sheet into a cylinder. Three twists of a 
given spiral create a periodicity in the r-direction. The WO rectangles bounded by heavy lines 
are the respective periodic cells in [r'. ab'] space and in (s, o f )  space. 

and introduce two integers to take into account the folding of the bands in the direction 
perpendicular to the cylinder axis. We will now show that our helical Bloch formulation can 
be used directly in (s, at) space with the folding of the bands following straightforwardly 
in the cases considered. An important advantage of using our approach is that the size of 
the unit cell is in general reduced drastically from that in the [z', a@] representation. 

Consider the {6, 3) tubule, which is depicted in figure 4. It consists of 84 atoms in 
the unit cell of [z', a81 space. The period along the z-direction is 3p. However, in (s, at) 
space this tubule consists of only six atoms in the unit cell. Here g' = (sc/sp) = A, 
s, = lR,l/&. This follows from equations (12) and (13). Another interesting feature in 
this description is that the three types of tubule, (6, 3). {I, I}, and (3. 01 all have the same 
unit cell in (s, ar) space although they appear to be entirely different in [z', a@] space as 
shown in figures 3 and 4. 

To evaluate the band structure of the (6, 3) tubule in our scheme, we first constmct the 
Bloch function given by equation (8) with the sum running over the six basis atoms of the 
unit cell with one-dimensional translation symmetry along the s-axis. The coordinates of 
the six atoms in (s, at) space are (d, 0). (Zd, 0). (d/Z, &d/Z), (3d/2,&d/2), (d, &d), 
(U, A d ) ,  with d as the nearest-neighbour distance. Assuming that each atom is interacting 
with its three nearest neighbours and that only x bonds are taken into consideration, ignoring 
the small changes due to the curvature of the tubule surface, we finally obtain a 6 x 6 
Hamiltonian matrix for determining the band structure. The neighbours outside the unit cell 
are mapped back to the equivalent atoms inside the unit cell by translation symmetry. Thus 
all the important interactions between atoms on the spirals att  taken into account. We thus 
obtain the energy bands E Y M C  for the tubule by solving the equation 

y6 - 9y4 + 12(2 - cos'ci - cosci cosy)y* - 4(4 + cos2 y - 3 cosz@ - 6cosci cos y 

+4cos'cicosy) =o. (18) 

Here y = E M M ~  - Eo, EO is the atomic orbital energy, (Y = 3Md/2,  and y = 3 d M ' ' d / ( 2 a ) .  
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Corresponding to the given integer value of m, there is a set of six onedimensional 
subbands given by the solutions of equation (18). Thus we obtain the energy bands of 
the tubule as being composed of many one-dimensional subbands. This corresponds to the 
creation of many one-dimensional bands by folding the rectangular graphitic sheet into a 
cylinder as in [lo]. Because of the small number of atoms in the unit cell this problem 
reduces to solving equation (18). 

Two of the solutions of equation (18) are easily obtained 

Y 2Y (3M + &M‘/a)d 
3 3 2 

yz = 1 +4cos -cos(Y + 2cos - = 3 t 2cos 

(3M - JSM’/a)d + 2cos(&M‘d/a). + 2cos 
2 

This reduces, after a transformation to [z’, a@] space, to the result obtained in [7] with no 
folding condition imposed. This transformation is found from equations (5) and (7) to be 

(20) M = (l/a)cosp + ksinp M‘ = lsinp - akcosp, 

For the tubule (nt, nz # n,], with H = RI + Rz, p is found to be 

tang = (4 - n z ) / V q m  + n2) (21) 

from equation (12). Identifying k, 1 with the quantities employed in [7],  we obtain 
their expression for the band structure from equation (19). The other four solutions of 
equation (18) correspond to the results obtained by folding the solutions of equation (19) 
twice in the a0 direction. As pointed out above, the structure of the solutions for the 
other two tubules, 11, l} and {3, 0). are formally the same as above and the differences 
lie in the appropriate pitch angle p, and in the projected periodicity s, along the respective 
spirals. These give rise to different sizes of the reduced zone and hence to the different 
times of further folding of the energy bands in the s-direction. This is reminiscent of 
taking the free electron parabolic band and then obtaining the appropriate zone foldings 
corresponding to different crystal structures. We have thus shown a great advantage in the 
use of helical Bloch functions constructed here in obtaining the band structures of a variety 
of spiral structures once an equation of the type of (18) is set up. We may point out that 
lattice vibrational frequencies and other similar properties can all be calculated by suitably 
adopting this technique. 

We will now obtain a criterion for the existence of a narrow gap in a graphitic tubule 
in our formalism. Since we have neglected the curvature effects due to the cylindrical 
structure, the bonding and the antibonding K bands are degenerate at the comer points of 
the first BZ of the two-dimensional graphitic sheet. In our helical reciprocal space this 
corresponds to the special values M = n/sc, M’ = aa/(sc&). After using the relationship 
between M and M’ in equation (6), we obtain the following condition for the tubule to have 
a narrow band gap: 

(na/s,)(cos p + sin p/&) = m (22) 

m being any integer. This is an altemate but equivalent result to that obtained in [6], [lo] 
and [ll]. 

In addition to the reduced size of the unit cell, the assignment of the atomic positions in 
the unit cell and the separation of the summation in equation (8) into each individual spiral 
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make possibIe a physical determination of the mutual interaction between the spirals on the 
same cylinder in discussing both the electronic and vibrational properties of this system. 

Experimentally, one often finds concentric tubules, not isolated single tubules [Z]. One 
often neglects the inter-tubule hopping of electrons in theoretical studies in view of the fairly 
large distance between the tubules and the lack of strong bonding in the radial direction. 
However, the long-range two-particle Coulomb interactions have to be considered. In [9], 
we have considered the effects of the helical stTuctum on the two-particle intra- and inter- 
tubule Coulomb mahix elements and contrasted with the cylindrical (non-helical) case. 
These exhibit a one-dimensional behaviour for a,M << 1 (logarithmic form = 0 and finite 
for m + 0), and two-dimensional features for a,M >> 1. Here a, is the radius of the 
innermost cylinder. The inter-tubule interactions resemble the inter-layer interactions in a 
layered system. Also, the inter-tubule interactions are found to be weaker than the intra- 
tubule interactions as expected. 

In conclusion, we have here constructed helical Bloch wave functions for studying the 
electronic shucture of tubules possessing helical symmehy. We have demonstrated how this 
method is complementary to the existing methods in the literature. This approach is based 
directly on the helical properties in contrast to the approaches in the literature where the 
two-dimensional Bravais lattice is rolled into a cylinder. Therefore it should be suitable in 
cases where only helical symmetry exists and that cannot be obtained by rolling a structure 
that does not form a periodic two-dimensional lattice into a cylinder. 

Acknowledgments 

Dr Carter White introduced us to the interesting tubule systems and provided us with his 
papers before publication and also discussed various aspects of the problem. It is a pleasure 
to thank him for all his guidance and help. We thank Lk A Saxena for sending us a copy 
of his preprint 151. This work was supported in part by the Office of Naval Research. 

References 

[I] ljima S 1991 "ire 354 56 
I21 Ebbesen T W and Ajayan P M 1992 Nature 358 220 
13) Wang L, Davids P S, Saxena A and Bishop A R 1992 Phys. Rev. B 46 7175 
[4] Lin M F and Shung K W 1993 Phys. Rev. B 47 6617; 1993 Phys. Rev. B 48 5567 
[SI Davids P S. Wang L. Saxena A and Bishop A R 1994 Phys. Rev. B 49 5682 
[6] Mintmire J W, Dunlap B I and White C T 1992 Pkys. Rev. Len. 68 631 
171 White C T, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485 
IS] White C T, Mintmire J W. Mowrey R C, Brenner D W, Roberlson D H, Harrison J A and Dunlap B I 1993 

[9] Lin-Chung P J and Rajagopal A K 1994 h d  Order In Condenred Moller ed P Jena and S D Mahanti 

[IO] Saito R. Fujita M, Dresselhaus G and Dresselhaus M S 1992 Phyx Rev. B 46 1804 
[I 11 Hamada N, Sawada S I and Oshiyama A 1992 Phys. Rev. kll. 68 1579 
1121 Ajiki H and And0 T 1993 J,  Phys. Sac Japan 62 1255 
[I31 Yi J Y and Bemholc J 1993 Phys. Rev. B 47 1708 
1141 Mintmire J W 1991 Density Functional Methods in Chpmislryed I K Labonowski and 1 W Andzelm (New 

Euc.kmimfefuUerenes ed W E  Billups and M A Ciufolini (New York VCH) p 125 

(New York Nova); 1994 Phys. Rev. B 49 8454 

York Springer) p I25 


